

Smarter, Faster, Cheaper: How AI is Rewriting the Global Supply Chain

Paper written by:
Stefano Cavasassi
Natali Dzneladze

AI news now fills every corner of the internet. With constant announcements, bold claims, and a fair amount of hype, it has become increasingly difficult to understand what truly matters. This blog aims to cut through that noise and focus on something concrete: real AI applications that already deliver measurable value.

One of the clearest examples is Supply Chain Management (SCM). Over the past decade, supply chains have faced pressure from market instability, geopolitical tensions, climate-related events, and increasing customer expectations. Traditional systems struggled to keep up, and AI emerged as a key capability to bring accuracy, speed, and resilience. Companies like Amazon, Walmart, Unilever, and Procter & Gamble show just how big the impact can be.

AI operates across three layers that fundamentally reshape supply chain operations:

- Predictive Intelligence, where machine learning models analyze enormous amounts of structured and unstructured data to anticipate better demand shifts, disruptions, and supplier performance issues.
- Prescriptive Optimization, which takes these predictions and determines the best course of action. It influences everything from where inventory should be located to how transportation routes should be designed. Reinforcement Learning is particularly important here, since it continuously improves decisions as it learns from real-world feedback.
- Autonomous Execution, where AI-driven systems transform decisions into physical actions through robotics, automated workflows, and intelligent agents that handle replenishment, routing, and warehouse operations independently.

These layers combine to create supply chains that are faster, smarter, and far more adaptable than traditional systems.

Forecasting is one of the clearest areas where the shift becomes evident. Until recently, companies relied mainly on historical averages, which often failed to capture the complexity of real-world demand. AI brings in dozens of internal and external data sources, including promotions, weather, social media trends, and macroeconomic indicators. The result is not a small improvement but a major leap in accuracy. Studies show forecasting accuracy rising from roughly 67–70% to 89–92%, inventory turnover improving by 15–22%, and stockouts dropping by as much as 30%. Unilever provides one of the best-known examples. By integrating 26 external datasets into its forecasting models, the company reached 92% accuracy and freed €300 million in excess inventory. Procter & Gamble achieved similar advancements by predicting demand more precisely, adjusting production schedules dynamically, and reducing overproduction and emergency shipments.

AI's influence becomes even more visible in logistics. Transportation is one of the most expensive parts of any supply chain, and AI-powered optimization can reduce delivery times by 15–25% and cut fuel consumption by 12–15%. For this case, we have to mention Walmart. Their AI routing system restructured more than 110,000 routes, saved 30 million miles, and reduced CO₂ emissions by 94 million pounds. It became so

successful that Walmart turned it into a commercial SaaS product, showing how scalable and economically powerful AI-driven logistics can be.

Warehousing has also undergone dramatic improvements. AI optimizes how items are stored, picked, packed, and moved through fulfillment centers. Research shows efficiency improvements reaching 58% along with significant reductions in errors and processing time. Amazon represents this evolution better than anyone else. With more than 750,000 robots working alongside humans, the company uses AI to coordinate every movement inside the warehouse. Robots such as Proteus, Sparrow, and Cardinal automate object identification, sorting, and transport. This allows Amazon to reduce fulfillment costs by over 25% and maintain same-day or next-day delivery even at a massive scale.

Another fascinating innovation worth highlighting is digital twins.

If you've ever used Google Maps to test different routes before leaving home, you already understand the basic idea behind digital twins. Now imagine doing that not for a 20-minute drive, but for hundreds of factories, thousands of shipping lanes, and millions of products. That's exactly what digital twins bring to modern supply chains. Digital twins act as constantly updated virtual replicas of entire supply chains. P&G was able to simulate over 15,000 different potential rerouting options within 45 minutes, allowing it to reduce its anticipated losses from \$42 million to \$18 million. Digital twin technology allows organizations to transform chaos into computable options, and academic research provides substantial evidence supporting the ability to reduce logistics costs, improve crisis response time, and increase organizational resilience.

Earlier generations of control towers served primarily as visibility dashboards. Modern AI-enabled control towers act as decision-support co-pilots: they continuously recompute plans in response to disruptions, detect issues autonomously, recommend viable alternatives, and synchronize production and logistics accordingly.

Advances in SaaS platforms such as AWS Supply Chain, Microsoft Supply Chain Center, Blue Yonder, o9 Solutions, and Kinaxis allow firms to adopt these capabilities without developing them internally. The major shift is not improved visibility but rather the acceleration of decision-making, with AI generating recommendations that users can approve, refine, or override.

While the benefits of AI are obvious, many companies face similar barriers when adopting it. These barriers include fragmented data (e.g., legacy ERPs, warehouse management systems, spreadsheets), poor data quality (which impacts model accuracy and data visibility), a lack of trust (planners' default to human judgment or do not trust machine-generated outputs), and companies can create problems for themselves by investing in tools before they determine what their strategy will be. Strategy must guide tool selection, not the opposite.

Supply chain management is shifting from reactive problem-solving to proactive, data-driven control. Digital twins simulate future scenarios rapidly, and AI control towers

convert extensive operational data into informed, real-time decisions.

Automation enables firms to execute supply chain activities more quickly, at lower cost, and with fewer errors. The next stage is the transition toward autonomy, in which systems can reroute, reschedule, and adjust operations with minimal human intervention. Adopting AI may not be challenge-free, but the direction is clear. Those who embrace it

now will build stronger, smarter, and more resilient supply chains. Those who hesitate will eventually find themselves competing with businesses that can act on the future before it even arrives.

SOURCES:

- AI Applications in Supply Chain Management: A Survey by Adamos Daios, Nikolaos Kladovasilakis, Athanasios Kelemis and Ioannis Kostavelis
- Artificial intelligence in operations management and supply chain management: an exploratory case study by Petri Helo & Yuqiuge Hao
- AI in Logistics and Supply Chain Management by Robert N. Boute and Maxi Udenio
- <https://docshipper.com/logistics/ai-changing-logistics-supply-chain-2025/>
- <https://productschool.com/blog/artificial-intelligence/ai-business-use-cases>
- <https://corporate.walmart.com/news/2024/03/14/walmart-commerce-technologies-launches-ai-powered-logistics-produc>
- <https://www.aboutamazon.com/news/operations/amazon-uses-ai-to-improve-shopping>